American Foulbrood

A newbee vets guide to what you need to know to diagnosis This awful, horrible, most imaturel bacterial disease of immature brood.

Bees and Humankind

"...A good and spacious land, a land flowing with milk and honey." Exodus 3:8

Hunting for honey is a practice that people have engaged in for at least 9,000 years

Honey Hunters of Africa

- Rich history of honey hunting
 - Honey Guide bird

First Real Beekeepers

https://www.youtube.com/watch?v=Q8X5GUXRfKc (italian)

Spread of Beekeeping

Beekeeping in North America

Early American Beekeeping

North America was heavily forested so their was probably a lot of honey hunting done as swarms established in hollow trees

Hives were managed in hollow gum tree trunks When bees were first introduced a bee gum sold for the price of a cow and a calf

INTERIOR OF A STRAW SKEP Note the irregular formation of natural Combs

Movable Frame Hives

- Permit disease inspection and control
- Moveable frame hives now mandatory

Advantages of the Movable Frame Hive

Incidence of 'illegal' hives

Incidence of AFB in PA % Colonies Infected

Step 1

• Know a healthy hive

A Healthy Frame of Brood

What's on a Frame

Capped Honey

Pollen (Bee Bread)

Unsealed Brood

Sealed Brood

Different Brood Cells

Worker cells

Drone cells

Economic Significance

- Causes over \$5 million worth of damage in the U.S. annually
- Most recent statistics (1992) suggest that less than 1% of managed bee colonies in the USA have active AFB infections
 - Incidence may be increasing, due to resistance to Terramycin (TM-25)
 - Infection rate does not include colonies with AFB infections that is suppressed by the continual use of TM-25

https://www.youtube.com/watch?v=IXEhL5I644o

Percent Chance of Missing Disease Found Only on One Brood Frame

Number of Frames Inspected

AFB Symptoms

- Usually only infects worker larvae
- Larvae die in upright position (pre- or post-pupal stage)
- Infected brood are dull white, yellow, or coffee colored
- Symptoms are apparent only after capping

Identification of AFB: Colony Symptoms

- Cappings greasy in appearance
- Scattered brood with sunken and punctured cappings
- Distinctive smell

AFB Scales and Pupal Tongue

- Pupae that die in their capped cells often die with their proboscis sticking up
- Brood killed by AFB and eventually dry into hard-to-remove scales on the bottom side of the cell
- These scales are a major source of infection

Progression of AFB in Honey Bee Colonies

- One study intentionally introduced number of infected brood cells into established honey bee colonies
- Colonies were monitored for presence of infected larvae
- Three distinctly different disease progressions were noted:
 - Quick disease progression
 - Initially quick progression, to apparent long term suppression
 - No initial progression, followed by quick progression

Progression of AFB Disease: Quick Progression

- AFB infection develops rapidly
- Number of diseased honey bee cells increase exponentially

Days after inoculation

Progression of AFB Disease: Apparent Disappearance

- AFB infection decreases then becomes undetectable for more than 4 years
- <u>Implications</u>: AFB spores may be present in honey bee colonies without clinical signs

Progression of AFB Disease: Delayed Progression

- AFB infection is not apparent for several weeks; then, followed by rapid growth phase
- Implications: Once infected, honey bee colonies may not show immediate symptoms of AFB

Time Period for Development of Symptoms

- Average time between honey bee larva being fed AFB spores, and showing clinical signs of disease is 12.5 days
- However, time needed for colonies to display AFB symptoms is considerably longer

Buying used equipment

American Foulbrood

Monitoring for AFB

- Honey samples (400 g) can be sent for diagnosis
 - Samples from individual hives which may have been exposed
 - Composite samples from apiaries
 - Samples from settling tank
- Test results may provide insight into problem areas
 - Positive tests do not necessarily mean AFB infection

Components of an IPM Program

Thresholds for Brood Diseases

- Low levels of most brood diseases, especially during stress periods, should be expected
 - Address persistent problem hives
- NO AFB should be tolerated
Components of an IPM Program

Indirect Suppression of Brood Diseases

- Modify Environment
 - Breed/use resistant bees
 - Reduce disease spread by robbing and drifting, or careless comb transfer
 - Cull old comb
- Modify human behavior
 - Keep informed

Assay

- Is a way to quickly and quantifiably evaluate a honey bee colony for the expression of a desirable trait
 - Usually faster than full-colony evaluation
 - This may or may not test the mechanism behind colony improvement
 - Some traits are strongly correlated to other traits

Breeding for Increased Honey Production

- A primary breeding objective
- Success often involves selection of other desirable traits:
 - Resistance to disease
 - Overwintering ability
 - Strong spring buildup

Assays for Increased Honey Production

- Measuring one day or one week gain
 - Daily/weekly gains are closely correlated to seasonal gains
- Brood area measurement
 - Larger brood areas are correlated to increased yields

Mechanisms of Disease Resistance

- Three general mechanisms:
 - Physiological
 - Behavioral
 - Anatomical
- More than one mechanism may work against one organism
- One mechanism may help control more than one organism

Breeding for AFB Resistance

- Two classic studies:
 - Park (1937) demonstrated that AFB resistance
 - Is heritable
 - Responds to artificial selection
 - Rothenbhuler (1964) developed resistant and non-resistant lines
 - "Brown" and "Van Scoy" lines
 - Identified genetic mechanism for AFB resistance

Physiological Mechanisms for AFB Resistance

- Speed of larval development
 - Smaller larvae are more susceptible than bigger larvae
- Nurse bees produce brood food with more antibiotic activity

Behavioral Mechanisms for AFB Resistance

- Hygienic behavior
 - Bees uncap cells and remove dead/diseased pupae
 - Uncapping and removing behavior is controlled by two different genes
 - Both genes are needed for expression of hygienic behavior
 - These genes are recessive

Assay for Hygienic Behavior

- Pin prick test
 - Pin is inserted into cell to kill contained pupae
 - 24 hours later, cells cleaned of dead pupae are counted

Cornell Collection

Anatomical Mechanisms for AFB Resistance

- Proventricular Valve
 - Helps adult nurse bees filter AFB spores from food

Reducing Spread of AFB

- Maintain 5 miles between neighboring apiaries
 - Not always possible
- Employ anti-robbing and anti-drifting strategies
- Keep colonies strong

Quarantine

- Larger operations should develop quarantine apiaries for:
 - Recently-purchased used equipment and colonies
 - Colonies that may have come in contact with AFB infected colonies
- Keep colonies/equipment in quarantine for at least 18 months

Reducing Disease Spread by Comb Transfer

- Transferring brood comb is a common management practice for:
 - Increasing or decreasing colony population
 - Making splits
- All comb should be thoroughly inspected for disease before transferring

Monitoring Honey Super Use

Calderone

- Smaller operations
 - Number each colony and honey super
 - Place used honey supers on the same colony every year
- Larger operations
 - Exchange honey supers within the same apiary only

Comb Culling

- Systematic culling of old brood comb may reduce incidence of disease
 - Old brood comb has smaller cell size
 - Acts as a sink to disease spores
- Some beekeepers replace each comb in the brood nest every 5 years
 - Each year, 2 outer brood frames are removed, and 2 frames of foundation are added to center of each brood box
- Some beekeepers cull frames on quality of comb
 - Fist size patch of drone brood, or can not see light through comb

Renting Hives for Pollination

- Renting hives for pollination can be especially stressful
 - Melons, squash, cucumbers, and cranberries are low nectar producing crops
 - Low bush blueberries require a lot of colonies in a small area resulting in scant recourses for individual colonies
 - Colonies become vunerable to EFB and Chalkbrood
- Supplemental feeding of pollen patties and sugar syrup may be advisable
- Prophylactic medication is advisable

Decreasing Stress While Moving Hives

- Follow "more than 2 miles, less than a foot" rule
 - Avoids loss of foraging force
- Prevent overheating
 - Use a top moving screen
 - Move at night or on a rainy day
- Avoid crushing bees and queen
 - Load colonies so frames run parallel to the direction of the road

Prevention of Pesticide Kill

- Use low-hazard apiaries
 - 10 foot hedge rows between apiaries and sprayed fields
 - Post signs indicating hive ownership
- Educate growers about appropriate pesticides
 - Extensive index in the <u>Hive and the Honey Bee</u>
- Move bees away before spraying
- Confine bees during spraying of pesticides which break down quickly

Short Term Confinement

- Place burlap over colony and secure edges with weights to ground
- Use sprinkler to keep burlap moist

Keeping Informed

- Regularly attend disease identification workshops
- READ, READ, READ!

Components of an IPM Program

Direct Suppression of Brood Diseases

- Physical and mechanical controls
 - Shaking
 - Burning
 - Sterilization
 - Quarantine
 - Temperature treatment
- Least toxic chemical controls
 - Terramycin $^{\mathbb{R}}$

Stress and Disease

- Most brood diseases will self correct as they are stress related
- Beekeepers should endeavor to:
 - Decrease likelihood of spread
 - Relieve stress
 - Re-queen if disease persistent
- AFB is an exception: NO LEVEL OF INCIDENCE SHOULD BE TOLERATED

"To burn is to cure"

Treatment of Suspect Colony

- If colony is suspected to be infected with AFB:
 - Reduce entrance
 - Confirm infection
 - Destroy colony

"TO BURN IS TO CURE"

Burning Hives

Cornell Collection

- At night, seal hive entrance with grass, all other cracks and holes with duct tape
- Kill bees
- Dig a pit
- Burn inner cover, frames, combs, bees, and honey
 - Burn parts individually, rather than all at once -- especially honey laden frames

Burning Alternative

- Some regions do not allow open burning
- Seal equipment in double heavy duty bags
 - Witness it incineration or burial at dump
- Use of plastic frames may make burning an environmental problem

Saving Hive Bodies

- Scorching
 - Scrape interior surfaces and top and bottom edges of hive bodies with hive tool
 - Scorch with a weed burner to a depth of 1/16"
- Wax Dipping
 - Dip cleaned parts in paraffin wax heated to 320°F (160°C) for 10 minutes
 - Very dangerous, and a fire hazard

Saving Frames

- Frames can be saved by scraping all surfaces clean, followed by:
 - Fumigation of frames in ethylene oxide gas chamber
 - Irradiating with gamma radiation
 - Autoclaving at 240^o for 45 minutes

DO NOT PROCRASTINATE! Better to burn than save

Saving Adult Bees: Shaking Method

- Shake adult bees into a clean super containing foundation
- Shake bees at night, away from other colonies, to prevent drift
- Confine bees for two days in cool area
 - As bees draw foundation, they consume the AFB spores in their honey stomach
- Burn infected equipment burned

Cleaning Beekeeper Equipment

- Gloves and smoker
 - Scrape off all wax and propolis
 - Scrub with soapy water
 - Will not kill all AFB spores, but will removes wax/propolis which harbors significant amounts of spores
 - Rubber gloves are much easier to clean than canvas gloves
- Hive tool
 - Scrape off all wax and propolis
 - Scorch with propane torch

Sterilizing Nosema Infected Equipment

- Heat all hive equipment for 24 hours at 120°F (49°C)
 - Frames should not contain honey or pollen
 - Ensure good air circulation
 - Ensure a constant and consistent temperature
 - No hot spots
 - This temperature is just below melting point of wax
 - Warm frames in supers in upright position
 - Allow supers to cool to room temperature before moving

Chemical Control Terramycin[®]

- Oxytetracycline HCL discovered as disease control agent in 1951
 - Prevents AFB BUT does not cure it
 - Controls EFB
- Sold as Terramycin Soluble Powder (TSP) for cattle and bees
 - TSP (25 g active ingredient per pound)
 - TM-50D (50 g active ingredient per pound)
 - TM-100D (100 g active ingredient per pound)

Medicating Colonies

- Several application methods used:
 - Bulk feeding
 - Dusting
 - Extender patties
- Never apply while honey supers are on colony within 45 days of marketable nectar flow

http://maarec.cas.psu.edu/

Bulk Feeding

- TSP (TM-25) is mixed with 1:1 sugar syrup
 - 1 Part TSP: 600 parts sugar syrup
 - Feed 0.5 gal (1.9 L) 3 times at 4 5 day intervals
- Considerations:
 - Terramycin breaks down quickly in water
 - Feed during nectar dearth
 - Complete feeding at least 45 days before honey supering
 - Terramycin breaks down quickly in sunlight
 - Do not use Boardman feeder

Dusting

- Mix 1 part TSP with 15 parts confectionary sugar
- Apply to top bars on the edge of brood frames
 - Dust will kill exposed brood
- Apply 1 oz (28 g) 3 times at 4 to 5 day intervals
- Complete applications 45 days before supering for honey production
Extender Patties

- Mix TSP with vegetable oil, petroleum jelly, and sugar
- Oil and jelly deter feeding so mixture is consumed over extended period
 - Usually 6 8 weeks
- Patties can be purchased pre-mixed
- Patties have not been proven effective for EFB
- MUST be removed 45 days before honey flow
 - Difficult as weak colonies will not consume proper dosage

Storing TM-25

- Store TM-25 in a sealed, dry container
 - Moisture will break down active ingredient
- Store in a cool, dark place

Fumagillin

- Anti-biotic bicyclohexyl-ammonium fumagillin
 - Trade name Fumidil B or Nosem-x
 - Isolated from fungus *Apergillus fumigatus*
- Only effective if fed in sugar syrup
- Thought to disrupt DNA replication in *N. apis*

Diagnosing AFB: Microscopic Examination of AFB Spores

 Observe spores after treatment with the "hanging drop method"

- Involves staining and fixing the spores
- Spores are 1.3 by 0.6 μm

Diagnosing AFB: Ropiness Test

> Place flat, <u>dry</u> toothpick in dead larvae or pupae, stir, and slowly, draw out

- If larval mass stretches to 1 inch, AFB is probably the cause of death
- Works for a limited time on larvae/pupae still infected by the bacteria's vegetative stage

Diagnosising AFB: Holst Milk Test

- Suspect scale or larvae is placed in 3-4 ml of 1% powdered skimmed milk solution and stored for 10 –20 minutes at 98°F (36°C)
 - If solution clears, AFB is present
 - Not always reliable
- Spore-forming bacteria produce proteolytic acid, which reacts with skimmed milk

Confirming Diagnosis

- Wrap 4" X 4" honey and nectar free sample of suspect comb in newspaper –NOT in foil, plastic wrap, or wax paper
- Pack with absorbent packing in a sturdy cardboard box
- Include a letter with your name, address, phone number, and suspected diagnosis

Where to Send Samples

Mail To: U.S. Department of Agriculture Bee Disease Diagnosis Bee Research Laboratory Building 476, BARC-E Beltsville, MD 20705

Life Cycle of AFB: Spores

- Spores are the dispersal and dormant stage of AFB
 - Spores are covered with a hard outer coat that protects them from most severe conditions
 - Spores are viable for up to 70 years
 - Spores are fed to developing larva by nurse bees

Virulence of AFB Spores

- As honey bee larva age, they become more immune to infection
 - LD₅₀ = 35 spores per one-day-old larvae
 - LD₅₀ = over 1 million spores per-two-day old larvae
 - Bee larva are immune 53 hours after egg hatching

Life Cycle of AFB: Vegetative Stage

- AFB spores germinate in bee larva's gut
- AFB bacteria penetrate gut wall when bee larva stretches out in cell
 - Bacteria reproduce rapidly
- Death usually occurs in the pre-pupal stage
- When all larval tissue is consumed, bacteria form spores (scale)
 - 2.5 billion spores per bee larva

Application of Fumidil-B

- Wintering colonies
 - 4.5 g (1 level tsp) to 1 gal
 2:1 sugar syrup
 - Feed one gallon per colony
 - Treat twice before brood rearing stops

