What is Soil Health?

Soil Health is the continued capacity of a soil to function. Healthy soils support plants, animals, and humans by:

- Cycling nutrients and increasing their availability;
- Increasing water infiltration and availability;
- Maintaining a stable porous structure that withstands natural forces (e.g., water, wind).

Healthy, fully functioning soil creates a habitat that sustains diverse soil micro and macroorganisms.

Why is Soil Health Important?

Soils that lack organic matter, structure, and microorganisms are susceptible to erosion, hold less water, and need more chemical inputs to rebalance their productivity. Improving soil health increases soil aggregates and improves soil structure, resulting in greater water infiltration, decreased erosion, and reduced runoff and sedimentation.

Follow these 4 Key Principles to Improve Soil Health:

1. Minimize soil disturbance;
2. Maximize the diversity of plants in the rotation;
3. Keep living roots in the soil as much as possible;
4. Keep the soil covered with plants and plant residues at all times.

What Is the Soil Health Card?

The Soil Health Card evaluates a soil’s health as a function of a select number of soil, water, plant, and other biological properties. The Card is a tool to help you monitor and make suggestions on how to improve soil health based on your own field experience and a working knowledge of soils. It is suggested to review the Web Soil Survey to gain an understanding of the soils mapped where you are measuring soil health. Regular use will allow you to record long-term changes in soil health, and to compare the effects of different soil management practices. It provides a mix of quantitative and qualitative assessment of soil health and evaluation ratings. The purpose is not to measure one soil type against another, but rather to use indicators that assess each soil’s ability to function within its capabilities and site limitations. It can be used to compare one tillage practice or land use to another, of the same soil type. The Bucket Kit can be used as a follow up providing a more detailed analysis of the soil’s health.

How Do You Use the Soil Health Card?

Step 1 The instructions to determine the “indicator descriptive ratings” is at the end of this document. One should also find out the soil series and map unit at the sample location.

Step 2 Use the table on page 2 for the best times to assess each indicator of soil quality and health.

Step 3 Divide the farm and fields into separate sections for evaluation in the same way you would divide them for soil-fertility sampling: separate by factors such as soil type, topography, and history of tillage, crop rotation, and manure application.

Step 4 Select a representative spot in your field and evaluate each soil health Indicator. Read the Descriptive Ratings in the table, and based on your test results or judgment, rate the indicator as Excellent, Good, Fair, or Poor by checking the box with the best description and entering the point value, in the score column, that you feel is appropriate.

Step 5 If you identify soil health indicators that are Poor or Fair, prescribe management strategies and conservation practices (see page 2) to improve soil health and quality over time.

Step 6 Follow changes in each of the soil health indicators over time, examine current field management practices, and consider ideas for management changes in problem areas.
Using Soil Health Management Strategies and Associated NRCS Conservation Practice Standards to Improve Observed Fair and Poor Soil Health Indicators

Surface Cover, Organic Matter, Soil Odor, and Earthworms Indicators

Management strategies such as:

- Using diverse high-residue crops -- see Conservation Crop Rotation (328);
- Using cover crops and cover crop mixes with grasses and legumes -- see Cover Crop (340);
- Using no-till or reduced tillage -- see Residue and Tillage Management (329) and (345);
- Reducing pesticide risk to beneficial soil organisms -- see Integrated Pest Management (595); and,
- Applying solid manure or compost at a proper agronomic rate -- see Nutrient Management (590).

These strategies will increase soil organic matter, soil biological activity, water holding capacity, and nutrient availability.

Infiltration, Compaction, and Soil Structure Indicators

Management strategies such as:

- Using diverse high-residue crops -- see Conservation Crop Rotation (328);
- Using cover crops, cover crop mixes, and deep-rooted cover crops -- see Cover Crop (340);
- Managing equipment traffic, especially on wet soils; and,
- Using no-till or reduced tillage -- see Residue and Tillage Management (329) and (345).

These strategies will improve soil structure and aggregation by increasing organic matter content and porosity, and will improve infiltration while minimizing compaction.

Best Times to Assess Indicators

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Recommended Timing for Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Early Spring Before Planting</td>
</tr>
<tr>
<td>Surface Cover</td>
<td>X</td>
</tr>
<tr>
<td>Infiltration</td>
<td>X</td>
</tr>
<tr>
<td>Compaction</td>
<td>X</td>
</tr>
<tr>
<td>Organic Matter</td>
<td>X</td>
</tr>
<tr>
<td>Soil Structure</td>
<td>X</td>
</tr>
<tr>
<td>Earthworms</td>
<td>X</td>
</tr>
<tr>
<td>Soil Odor</td>
<td>X</td>
</tr>
</tbody>
</table>
Interpreting Total Score Results

<table>
<thead>
<tr>
<th>Total Score =</th>
<th>Excellent 60-77 pts</th>
<th>Good 40-56 pts</th>
<th>Fair 20-39 pts</th>
<th>Poor 0-19 pts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Cover</td>
<td>>80% living plants and dead residue visible on soil surface.</td>
<td>60-80% living plants and dead residue visible on soil surface.</td>
<td>30-60% living plants and dead residue visible on soil surface.</td>
<td>0-30% living plants and dead residue visible on soil surface.</td>
</tr>
<tr>
<td>Infiltration (Based on soil texture, refer to Infiltration Chart)</td>
<td>Infiltration rate at least two classes higher than listed range, indicates soil absorbs water in a timely manner and is not susceptible to runoff or ponding.</td>
<td>Infiltration rate within listed range, indicates soil absorbs water, but more slowly, and runoff and ponding may occur.</td>
<td>Slower infiltration rate than listed range, indicates soil absorbs water very slowly, and runoff and ponding will occur.</td>
<td></td>
</tr>
<tr>
<td>Compaction/Root growth (Based on moist topsoil conditions)</td>
<td>Wire flag penetrates easily into 8 inches or more of soil with no resistance; unrestricted root growth.</td>
<td>Wire flag penetrates into 6-8 inches of soil with a little resistance; requires a little wiggling of pin flag; little root growth restriction.</td>
<td>Wire flag penetrates into 4-6 inches of soil with a lot of wiggling of pin flag and moderate force; root growth restricted.</td>
<td>Wire flag penetrates into 2-4 inches of soil with force, roots may be growing laterally.</td>
</tr>
<tr>
<td>Organic Matter (Compare to samples or Munsell book using Hues 7.5YR, 10YR or 2.5Y)</td>
<td>Soil is black in color; organic matter is visible in the topsoil layer. Value = 2 and chroma = 2.</td>
<td>Soil is dark brown in color; organic matter is visible in the topsoil layer. Value = 3 and chroma = 3.</td>
<td>Soil is somewhat dark in color; little organic matter is visible in the topsoil layer. Any value or chroma that doesn't meet Good or Poor numbers.</td>
<td>Soil is light brown to dull colored; no organic matter is visible in the topsoil layer. Value > 4 and chroma > 4</td>
</tr>
<tr>
<td>Soil Structure/Aggregation</td>
<td>Soil is granular, soft and crumbly, held together with many fine roots. Looks like cottage cheese.</td>
<td>Soil is granular, but not soft and crumbly, held together with some fine roots.</td>
<td>Soil is blocky and firmer with few fine roots.</td>
<td>Soil is single grain, massive or platy and hard to break apart. It has few or no fine roots.</td>
</tr>
<tr>
<td>Earthworms and Macroinvertebrates</td>
<td>Earthworms/grubs etc. >7 per spade, obvious middens and casts, and many pores.</td>
<td>Earthworms/grubs etc. 4-6 per spade, obvious middens, casts, and pores.</td>
<td>Earthworms/grubs etc. 1 to 3 per spade, few middens, casts, and pores.</td>
<td>Earthworms/grubs etc. None present per spade, no middens, casts, or pores.</td>
</tr>
<tr>
<td>Soil Odor</td>
<td>Earthy/Sweet odor noticeable > 6 inches from nose.</td>
<td>Earthy/Sweet odor, noticeable when close to nose.</td>
<td>Little odor at all.</td>
<td>No odor at all or sour, metallic, kitchen sink, rotten egg, stagnant.</td>
</tr>
</tbody>
</table>
Instructions to determine the Indicator Descriptive Ratings

Equipment needed: measuring tape, small spray bottle of water, paper towels, 1-quart water, sharp shooter shovel, pin flag. Photos, charts, and guides of Attachments.

All determinations are performed either on the soil surface or within the topsoil layer, 6-12 inches thick. (You should dig a hole to determine the thickness of the topsoil layer).

Soil Texture (see Attachment A)
1. Take sample 2-4 inches into topsoil layer.

Surface Cover: (see Attachment B)
1. Visual judgement by using NRCS residue photos or with a measuring tape.
2. Make estimates based on decomposing residue and living plant material.

Infiltration (see Attachment C)
1. Dig a small 2-inch-deep hole so that it has a flat bottom with straight sides.
2. Lightly scratch the bottom and sides of the hole with the pin flag.
3. Pour in 1 inches of water.
4. Time how long it takes water to completely infiltrate.
5. Repeat two to three times.
6. Compare to Infiltration Chart with soil textures.

Compaction:
1. Hold pin flag about 12-15” from lower end.
2. Push lower end into soil surface, wiggling if needed. Pin flag shouldn’t bend.
3. Observe how deep the pin flag penetrates the soil.

Organic Matter (see Attachment C)
1. Select soil sample from topsoil layer.
2. Moisten soil if dry.
3. Match soil with organic matter color chart or use Munsell color chart if available.

Soil Structure/Aggregation: (see Attachment D) Can be done along with Earthworms.
Visual judgement using NRCS photos.

Earthworms:
1. Remove a large shovel of topsoil.
2. Separate the soil gently looking for earthworms and other macroinvertebrates.
3. Count number of them present.

Soil Odor:
1. Cup soil in both hands and smell.
2. Healthy soil should have a sweet earthly aroma.
3. If soil smells sour, metallic, stagnant, or like kitchen cleanser, this may be a good indicator that the soil is not functioning.
GUIDE FOR ESTIMATING SOIL TEXTURE BY FEEL

Place some soil, about the size of an egg, in your palm. Spray with water to moisten it and knead the soil to break down all lumps (aggregates). Remove any pebbles or wood fragments. Knead it until it feels like moist putty, not mud.

Does soil remain in a ball when thrown 1 ft. in air and caught?

- Yes → COARSE
- No → Is soil too dry?
 - Yes → Add dry soil to soak up water
 - No → Is soil too wet?
 - Yes → LOAMY SAND
 - No → Does soil make a weak ribbon >1/2' long?

Does soil make a weak ribbon >1/2' long?

- Yes → MODERATELY COARSE
- No → Does soil make a medium ribbon 2-3' long after breaking?
 - Yes → MEDIUM
 - No → Does soil make a strong ribbon >3' long after breaking?
 - Yes → MODERATELY FINE
 - No → FINE

Wet a small pinch of soil in palm and rub with forefinger.

- Does soil feel very gritty?
 - Yes → SANDY LOAM
 - No → Does soil feel very smooth?
 - Yes → SILTY CLAY
 - No → CLAY

Generally, each inch of ribbon equals 10% CLAY

% CLAY

LOW → HIGH
<table>
<thead>
<tr>
<th>TEXTURE CLASS</th>
<th>FEEL</th>
<th>ABILITY TO FORM STABLE BALL</th>
<th>RIBBON OUT</th>
<th>SOIL HANDS STICKY</th>
<th>CONSISTENCY MOIST DRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAJOR (USDA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COARSE (sand)</td>
<td>very gritty</td>
<td>no</td>
<td>no</td>
<td>no no</td>
<td>loose loose</td>
</tr>
<tr>
<td>MOD. COARSE (loamy sand)</td>
<td>very gritty</td>
<td>yes</td>
<td>yes, very weak <1/2" long</td>
<td>yes no</td>
<td>loose loose</td>
</tr>
<tr>
<td>MOD. COARSE (sandy loam)</td>
<td>gritty</td>
<td>yes, easily deformed</td>
<td>yes, dull surface poorly formed</td>
<td>yes no</td>
<td>very friable soft</td>
</tr>
<tr>
<td>MEDIUM (loam)</td>
<td>slightly gritty</td>
<td>yes</td>
<td>yes, dull surface poorly formed</td>
<td>yes yes, slight to moderate friable soft</td>
<td></td>
</tr>
<tr>
<td>MEDIUM (silt loam)</td>
<td>velvety</td>
<td>yes</td>
<td>yes, dull surface poor to well formed</td>
<td>yes yes, slight to moderate friable soft</td>
<td></td>
</tr>
<tr>
<td>MOD. FINE (silty clay loam)</td>
<td>velvety & sticky</td>
<td>yes</td>
<td>yes, shiny surface well formed</td>
<td>yes yes</td>
<td>friable slightly to firm hard</td>
</tr>
<tr>
<td>MOD. FINE (clay loam)</td>
<td>slightly gritty & sticky</td>
<td>yes</td>
<td>yes, shiny surface well formed</td>
<td>yes yes</td>
<td>firm slightly hard to hard</td>
</tr>
<tr>
<td>MEDIUM (sandy clay loam)</td>
<td>very gritty & sticky</td>
<td>yes</td>
<td>yes, shiny surface well formed</td>
<td>yes yes</td>
<td>friable slightly hard to hard</td>
</tr>
<tr>
<td>FINE (sandy clay)</td>
<td>very gritty ext. sticky</td>
<td>yes</td>
<td>yes, shiny surface well formed</td>
<td>yes yes</td>
<td>firm hard to very hard</td>
</tr>
<tr>
<td>FINE (silty clay)</td>
<td>ext. sticky & very smooth</td>
<td>yes, very resistant to molding</td>
<td>yes, shiny surface well formed</td>
<td>yes yes</td>
<td>firm to ext. frim hard to very hard</td>
</tr>
<tr>
<td>FINE (clay)</td>
<td>ext. sticky & very smooth</td>
<td>yes, very resistant to molding</td>
<td>yes, shiny surface well formed</td>
<td>yes yes</td>
<td>firm to ext. frim hard to very hard</td>
</tr>
</tbody>
</table>
How to use the photos

Use these photographs of residue amounts to get a good picture in your mind of what the various percentages of ground cover might look like as you look down at evenly distributed residues.
How to measure residues

- Use any line that is equally divided into 100 parts. Fifty foot cable transect lines are available for this purpose. Another tool is a 50-foot nylon rope with 100 knots, six inches apart. A 50-foot tape measure using the 6-inch and foot marks also works well.
- Stretch the line diagonally across the rows. Count the number of marks (tabs or knots) that have residue under them when sighting from directly above one end of the mark. It is important to use the same point on each mark for accuracy. Don’t count residue smaller than 1/8 inch in diameter.
- Walk the entire length of the rope or wire.

The total number of marks with residue under them is the percent cover under them is the percent cover for the field. If your rope or tape has only 50 marks, multiply by 2; for 25 marks, multiply by 4.
- Repeat the procedure at least 3 times in different areas of the field and average the findings.

Helping People Help the Land.

USDA is an equal opportunity provider and employer.
INFILTRATION RATE BASED ON SOIL TEXTURE CLASS

(Attachment C)

<table>
<thead>
<tr>
<th>MAJOR SOIL TEXTURE CLASS</th>
<th>USDA SOIL TEXTURE CLASS</th>
<th>INFILTRATION RATE (1 in of water to infiltrate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse</td>
<td>sand or loamy sand</td>
<td><10 min</td>
</tr>
<tr>
<td>Moderately Coarse</td>
<td>sandy loam</td>
<td>10-30 min</td>
</tr>
<tr>
<td>Medium</td>
<td>silt loam, loam, or sandy clay loam</td>
<td>30-120 min</td>
</tr>
<tr>
<td>Moderately Fine</td>
<td>silty clay loam, or clay loam</td>
<td>2-10 hrs</td>
</tr>
<tr>
<td>Fine</td>
<td>silty clay, clay, or sandy clay</td>
<td>>10 hrs</td>
</tr>
</tbody>
</table>

ORGANIC MATTER DETERMINATION BY COLOR

(Compare using the color chips below or use a Munsell color book.)

<table>
<thead>
<tr>
<th>EXCELLENT</th>
<th>GOOD</th>
<th>FAIR</th>
<th>POOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>This color or darker</td>
<td>This color or close to it.</td>
<td>All colors in between good and poor.</td>
<td>This color or lighter.</td>
</tr>
</tbody>
</table>

![Color Chips](image1.png)
SOIL STRUCTURES USED IN SOIL HEALTH

Granular

Blocky

Single grain Massive Platy